File immediate_input_stream_handler.cc
File List > framework > stream_handler > immediate_input_stream_handler.cc
Go to the documentation of this file
// Copyright 2019 The MediaPipe Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "mediapipe/framework/stream_handler/immediate_input_stream_handler.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <vector>
#include "absl/log/absl_check.h"
#include "absl/status/status.h"
#include "absl/synchronization/mutex.h"
#include "mediapipe/framework/calculator_context_manager.h"
#include "mediapipe/framework/calculator_framework.h"
#include "mediapipe/framework/collection_item_id.h"
#include "mediapipe/framework/input_stream_handler.h"
#include "mediapipe/framework/mediapipe_options.pb.h"
#include "mediapipe/framework/tool/tag_map.h"
namespace mediapipe {
using SyncSet = InputStreamHandler::SyncSet;
REGISTER_INPUT_STREAM_HANDLER(ImmediateInputStreamHandler);
ImmediateInputStreamHandler::ImmediateInputStreamHandler(
std::shared_ptr<tool::TagMap> tag_map,
CalculatorContextManager* calculator_context_manager,
const mediapipe::MediaPipeOptions& options, bool calculator_run_in_parallel)
: InputStreamHandler(tag_map, calculator_context_manager, options,
calculator_run_in_parallel) {
for (auto id = tag_map->BeginId(); id < tag_map->EndId(); ++id) {
sync_sets_.emplace_back(this, std::vector<CollectionItemId>{id});
ready_timestamps_.push_back(Timestamp::Unset());
}
}
void ImmediateInputStreamHandler::PrepareForRun(
std::function<void()> headers_ready_callback,
std::function<void()> notification_callback,
std::function<void(CalculatorContext*)> schedule_callback,
std::function<void(absl::Status)> error_callback) {
{
absl::MutexLock lock(&mutex_);
for (int i = 0; i < (int)sync_sets_.size(); ++i) {
sync_sets_[i].PrepareForRun();
ready_timestamps_[i] = Timestamp::Unset();
}
}
InputStreamHandler::PrepareForRun(
std::move(headers_ready_callback), std::move(notification_callback),
std::move(schedule_callback), std::move(error_callback));
}
NodeReadiness ImmediateInputStreamHandler::GetNodeReadiness(
Timestamp* min_stream_timestamp) {
absl::MutexLock lock(&mutex_);
Timestamp input_timestamp = Timestamp::Done();
Timestamp min_bound = Timestamp::Done();
bool stream_became_done = false;
for (int i = 0; i < (int)sync_sets_.size(); ++i) {
if (ready_timestamps_[i] > Timestamp::Unset()) {
min_bound = std::min(min_bound, ready_timestamps_[i]);
input_timestamp = std::min(input_timestamp, ready_timestamps_[i]);
continue;
}
Timestamp prev_ts = sync_sets_[i].LastProcessed();
Timestamp stream_ts;
NodeReadiness readiness = sync_sets_[i].GetReadiness(&stream_ts);
min_bound = std::min(min_bound, stream_ts);
if (readiness == NodeReadiness::kReadyForProcess) {
ready_timestamps_[i] = stream_ts;
input_timestamp = std::min(input_timestamp, stream_ts);
} else if (readiness == NodeReadiness::kReadyForClose) {
ABSL_CHECK_EQ(stream_ts, Timestamp::Done());
if (ProcessTimestampBounds()) {
// With kReadyForClose, the timestamp-bound Done is returned.
// TODO: Make all InputStreamHandlers process Done() like this.
static const Timestamp kDonePrecedingTimestamp =
Timestamp::Done().PreviousAllowedInStream();
if (prev_ts < kDonePrecedingTimestamp) {
// When kReadyForClose is received for the first time for a sync set,
// it is processed using the timestamp preceding Done() to indicate
// input stream is done, but still needs to be processed.
min_bound = std::min(min_bound, kDonePrecedingTimestamp);
input_timestamp = std::min(input_timestamp, kDonePrecedingTimestamp);
ready_timestamps_[i] = kDonePrecedingTimestamp;
} else {
ready_timestamps_[i] = Timestamp::Done();
}
} else if (prev_ts < Timestamp::Done()) {
stream_became_done = true;
ready_timestamps_[i] = Timestamp::Done();
}
}
}
*min_stream_timestamp = min_bound;
if (*min_stream_timestamp == Timestamp::Done()) {
return NodeReadiness::kReadyForClose;
}
if (input_timestamp < Timestamp::Done()) {
// On kReadyForProcess, the input_timestamp is returned.
*min_stream_timestamp = input_timestamp;
return NodeReadiness::kReadyForProcess;
}
if (stream_became_done) {
// The stream_became_done logic is kept for backward compatibility.
// Note that the minimum bound is returned in min_stream_timestamp.
return NodeReadiness::kReadyForProcess;
}
return NodeReadiness::kNotReady;
}
void ImmediateInputStreamHandler::FillInputSet(Timestamp input_timestamp,
InputStreamShardSet* input_set) {
absl::MutexLock lock(&mutex_);
for (int i = 0; i < (int)sync_sets_.size(); ++i) {
if (ready_timestamps_[i] == input_timestamp) {
sync_sets_[i].FillInputSet(input_timestamp, input_set);
ready_timestamps_[i] = Timestamp::Unset();
} else {
sync_sets_[i].FillInputBounds(input_set);
}
}
}
int ImmediateInputStreamHandler::SyncSetCount() {
absl::MutexLock lock(&mutex_);
return sync_sets_.size();
}
} // namespace mediapipe